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a-C:H films were produced on 316 L stainless steel via magnetron sputtering technique. The effects of bias voltage
on the composition, structure and properties of the films were studied. The sp2C fraction grows as the bias
voltage increases, and the internal stress and hardness increase constantly. In ambient air, the films deposited at
— 150 V have the lowest friction coefficient (COF) of 0.095, while those at — 30 V have the lowest COF of 0.028

in salt solution, benefiting from the higher H content. The corrosion resistance of the film is affected compre-
hensively by the thickness, surface morphology, sp? clusters and transition layer. The a-C:H film at — 60 V has the
lowest corrosion current density (5.41 x107! A/cm?) and the highest protection efficiency (99.8 %).

1. Introduction

Environment-affected maritime engineering equipment often fails
prematurely owing to wear, corrosion, erosion and other factors, and
faces the challenge of durability and safety [1,2]. The deposited a-C:H
films, which have good lubricating capabilities, mechanical character-
istics, and chemical inertness [3,4], can effectively prevent the damage
that is caused to metal components by mechanical wear and saltwater
corrosion, and these films can be employed as protective films in marine
environments.

In the atmosphere, considerable chemical force and capillary force
will be formed due to the existence of water and oxygen molecules. At
the same time, when humidity level rises, a-C:H film friction coefficient
progressively rises as a result of the increase of oxygen-containing
groups on the friction surface [5,6]. In dry environment, a dense
transfer film caused by the formation of sp® sites is the key to ultra-low
friction [7,8]. In an aqueous environment, low friction is achieved
through the formation of hydrophilic hydrocarbon groups on the surface
of films [9]. Overall, the excellent tribological features of a-C:H films are
determined by the hardness, H content, and the amount of sp? clusters. A
higher level of hardness may effectively increase the load-bearing ca-
pacity of a-C:H films and lower the depth of wear marks, which leads to a

reduction in the amount of wear. Hydrogen in the film can passivate the
dangling ¢ bonds, which in turn reduces the likelihood of covalent in-
teractions and adhesion, avoiding the high friction generated during
sliding [10-12]. Furthermore, the production of graphitized transfer
film is aided by the greater sp>C phase concentration, which in turn
decreases the friction coefficient.

Besides the outstanding lubrication properties, the excellent corro-
sion resistance is another advantage for the utilization of a-C:H films in
marine environments, because of the high hydrophobicity, chemical
inertness, and low electrical conductivity [3,13,14]. However, the
corrosion resistance of a-C:H films varies by the deposition techniques.
Inevitably, pinhole flaws manifest themselves in the film during the
magnetron sputtering deposition procedure [15], which results in the
corrosion originating from the solution penetration. Also, the corrosion
resistance of a-C:H films is significantly affected by the transition layer.
The suitable transition layer contributes to the higher adhesion, avoid-
ing the occurrence of delamination and reducing the formation of local
defects [16-18]. In addition, the thickness can also influence the
corrosion resistance of the film, since the corrosion process can be
delayed by prolonging the corrosion path in thick films [19]. With these
regards, the regulation of the composition and the microstructure is of
significance to the corrosion resistance of the films besides the
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tribological performance. In this sense, the control of substrate bias
voltage is a convenient and effective way to tailor the tribological and
anti-corrosion properties, because the H content, sp2/sp>-carbon bond
ratio, compactness and thickness of the carbon films are all influenced
by substrate bias and the transition layer can be also designed by
changing substrate bias voltage.

This work therefore developed five distinct types of a-C:H films by
magnetron sputtering on 316 L substrates with varying substrate bias
voltage. The friction properties and corrosion behavior were investi-
gated considering the influence by various bias voltage. The numerous
properties of the a-C:H films are rationally explained by discussing
factors such as H content, spz/sp3 ratio, porosity, thickness, and tran-
sition layer.

2. Experimental details
2.1. The deposition of a-C:H films

The a-C:H films were deposited on 316 L stainless steel (25 mm x 8
mm) and n-type Si (100) wafers (20 x20 mm) by PVD method. The test
target is composed of a Cr target and two symmetrically distributed
graphite targets. Sputtering gas Ar (99.9 %) and reactive gas CHy
(99.9%) is introduced into the reaction during the preparation process.
Ultrasound was used to clean the substrates for 15 min in petroleum
ether and anhydrous ethanol to get rid of oil stains and other dirt on the
surface, and then air-dried and put on a turntable in the deposition
chamber. After the vacuum degree of the chamber reached to 3 x 107>
Pa, with a high bias voltage (—400 V), the oxide layer and other im-
purities on the surface of Ar" sputtering were used to complete the
cleaning of the substrate for 30 min. The Ar flow rate was constant at 20
sccm during film deposition. A Cr metal layer of 4 A was deposited on
the substrate for 7 min to promote bonding, and then the deposition of
the CryCyH, layer was started. The initial flow rate of CH4 was 5 sccm,
and gradually increased to 10 sccm at this stage. Cr target current drops
to 0 A while C target current rises to 3.2 A, establishing a gradient
process. In addition, since the initial process substrate bias is — 60 V, the
bias voltage also has a falling/maintaining/rising process during the
deposition of the CryCyH, layer, and it remains constant during the
subsequent deposition of the a-C:H layer. Five distinct a-C:H films were
made by varying the substrate bias. Table 1 outlines the deposition
parameters. In order to convenience the discussion, the samples pre-
pared under — 30V, — 60V, — 90 V, — 120 V and — 150 V bias voltage
were denoted as S1, S2, S3, S4 and S5.

2.2. Characterization

The surface and cross-sectional film morphology were obtained by
the aid of field emission scanning electron microscopy (FE-SEMJSM-
7610 F). The chemical structures were characterized by Raman (Raman
HR Evolution) at a laser wavelength of 532 nm. X-ray photoelectron
spectroscopy (ESCALAB 250Xi) was used for the elemental analysis, and
the binding energy was calibrated with the C 1 s peak at 284.6 eV. To
minimize the impact of the substrate, the hardness and modulus of the

Table 1
a-C:H films deposition parameters.
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films were studied using a nanoindenter with an indentation depth of 80
nm. By comparing the bending of the steel substrate before and after the
test (FST1000), the internal stress of the a-C:H film was calculated using
Eq. (1) [20]:

E,h? 1 1
e S (. 1
° 6(1 — Va)hi (Rl Ri—l) ( )

where Es is Young’s modulus, vs is steel Poisson ratio; hs is the
substrate thickness and hi is the coating; substrate’s curvature,
measured both before and after film deposition, is denoted by R;.; and
Rj, respectively.

2.3. Friction and wear test

The dry friction properties of the samples in ambient air (40 £ 5%
RH and 25 + 2 °C) were tested with a reciprocating tribometer (CSM).
The friction pair was a 9Crl8 steel ball (6 mm), and the friction is
continued for 60 min under 5 N load and 5 Hz sliding frequency. The
tribocorrosion performance test was carried out in a 3.5 wt% NaCl so-
lution, the experimental setup (MFT-EC4000) is shown in the Fig. 1.
Al;O3 ball (6 mm) was the friction pair. After the sample stood for
10 min, test was started with 5 N load and 0.5 Hz frequency. The wear
scar morphology was observed by a 3D surface profiler (MicroXAM-
800), also used to determine the wear volume. The wear rate is calcu-
lated by Eq. (2):

w=V/NS (2

where the wear rate (mm®/(Nm) is represented by w, V represents
the wear volume (mrng), N is the load (N) and the total distance (m) is
represented by S, respectively.

2.4. Electrochemical property

Electrochemical experiments were performed in a standard three-
electrode measurement system (CS 350). SCE is the reference elec-
trode and Pt is the counter electrode. A sample with an exposed area of

3.5 wt.% NaCl solution

Sliding

Fig. 1. Schematic diagram of friction device.

Process parameters Cleaning Film deposition
Cr CrxCyH, a-C:H

S1 S2 S3 sS4 S5
Ar flow (sccm) 20 20 20 20 20 20 20 20
CH,4 flow (scem) 0 0 5-10 10 10 10 10 10
Cr target current (A) 0.3 4 4-0 0 0 0 0 0
C target current (A) 0.2 0 0-3.2 3.2 3.2 3.2 3.2 3.2
Bias (V) -400 -60 -60— -30 -60 -90 -120 -150
Time (min) 30 7 30 150 150 150 150 150
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1 cm? in saline is the working electrode. After 30 min of open-circuit
potential stabilization, the Tafel tests were carried out at a scan rate of
1 mV/s throughout a scan range of — 0.6-1.2 V.

3. Results and discussion
3.1. Structure and morphology

The surface and cross-sectional film morphology under a variety of
substrate bias are shown in Fig. 2. The surface of the film becomes
smoother as the bias voltage gets higher, and the size of the "island-like"
structure that is present on the surface progressively gets smaller.
Nevertheless, the surface of S1 sample is still uniform and dense under
low substrate bias, and there is no microcrack propagation. The mor-
phologies of the cross-section show that all a-C:H layers are amorphous
and the thickness decreases with the increase of bias voltage. While the
thickness of the Cr/CryCyH, transition layer is gradually decreasing,
more evident columnar development is emerging. The substrate bias can
accelerate the movement of nearby positively charged ions to the sam-
ple, impact the surface, compensate for voids, and thus reduce surface
roughness [21]. When the bias voltage is low, the energy of sputtering
ions is weak, and the thermal effect that is created by the deposition
process is minimal as well. In addition, the film is deposited at a fast
pace, and the surface diffusion is not adequate to relieve the rapid
buildup of local particle clusters, which results in a relatively rougher
surface [22]. When the bias voltage is raised, the collision and
bombardment of ions increased on the film surface. As a result, the
sputtering and etching effects on the film surface are enhanced [23], the
thermal effect is also increased, and the surface diffusion rate is
improved, so the film thickness and surface roughness are significantly
reduced. It is a similar mechanism that occurs during the deposition of
the Cr/CryCyH, transition layer, where the weakly bound C atoms are
more likely to be bombarded and sputtered by high energy ions when
the bias voltage is increased [24]. With the increase of Cr/C ratio, the
transition layer changes from dense amorphous state to columnar
structure [25,26]. Unlike the obvious columnar/amorphous interface of
S5 sample, the a-C:H layer of S1 sample grows epitaxially on the basis of
Cr/CryCyH, layer, which makes the interface more compact.

D peak and G peak are two typical characteristic peaks of carbon
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materials. In Raman spectrum analysis, the structural change of carbon
film network can be judged by the ratio of the integral area of D peak to
G peak and the half width of G peak [27,28]. Fig. 3a shows clearly that
when the bias voltage is increased from — 30 V to — 150 V, the slope of
the photoluminescence background of the a-C:H film diminishes.
Because the background is closely related to the H content, the H content
of the film can be estimated according to Eq. (3) [29]:

H(at.%) = 21.7 + 16.6log [E(/tm)} 3)

m is the slope of the fitted linear background, I is the intensity of the
G peak.

The fitting data of Raman spectra and the calculation results of H
content are shown in Fig. 3b. The Ip/Ig value of the a-C:H film grew as
the bias voltage increased, indicating that the sp>C content in the film
steadily increased. The half width of the G peak also shows a gradually
increasing trend, indicating that the disorder of the film is gradually
enhanced [27]. The phenomena above can be analyzed by ion implan-
tation and bombardment. It can be known from the sub-implantation
model of sputtered atoms and the atomic surface motion model [30,
31]. When high-energy particles are injected into the film, the released
energy will increase the energy of local atoms, promote the trans-
formation from stable sp2C bond to metastable sp>C bond, and increase
the content of sp°C bond. The high-energy particles injected into the
carbon film can also fill the gaps between the deposited atoms and
improve the density. The bombardment impact of incident ions on the
film surface is weaker at low bias voltage, and a large number of
introduced H can not be released due to the rapid adsorption of
hydrogen-containing ion clusters (-CHp), resulting in higher sp>C bonds
and H content [32]. After the bias is increased, the surface adsorption
weakens, and the sub-implantation gradually dominates the growth, the
higher ion bombardment energy leads to the increase of the lattice
distortion and disorder effect of the film [33]. However, excessive heat
generation will promote the re-conversion of sp>C bonds to spC bonds,
resulting in the decrease of sp> hybrid fraction [34]. At the same time,
the bombardment of high energy ions will destroy the C-H-sp° bond,
resulting in the local recombination of H atoms, and the generated Hy
molecules migrate to the surface and desorb, resulting in the decrease of
H content [35].

1.0%m
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0.19m

S00nm 500nm
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Fig. 2. Surface and cross-sectional film morphology under varied substrate bias.
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Fig. 3. (a) Raman spectra; (b) Ip/Ig, Grwum and H content of a-C:H films.

After 180 s of Ar'" etching, the C 1s spectra of a-C:H films were
analyzed by XPS to validate the carbon bond state at a variety of sub-
strate bias voltages. Fig. 4a indicates that the deconvolution XPS spec-
trum of the C 1 s peak has three major components: C-C sp at 284.5 eV,
C-C sp3 at 285.2 eV, and C-O at 286.7 eV [28,36]. The C-O bond content
of the a-C:H film is stable at about 5%, and the source may be the left-
over oxygen in vacuum chamber or sample oxidation [37]. The ratio of
sp2C and sp>C bonds in the film can be accurately estimated with the aid
of the area ratio of the fitted peaks [38]. Fig. 4b illustrates the concen-
tration of various carbon bonds inside a-C:H films. When the substrate
bias voltage goes from — 30 V to — 150 V, the ratio of sp?/sp° increases
from 0.65 to 1.61, indicating that the increase of substrate bias is
beneficial to the transition from sp>C to sp2C. This is compatible with the
preceding Raman findings.

3.2. Mechanical properties

Fig. 5 depicts the internal stress, hardness, and elastic modulus of a-
C:H films under varied substrate bias. With a rise in substrate bias, the
ion bombardment effect constantly increase, resulting in an increase in
internal stress and hardness of the film. The results of Raman fitting
show that Ip/Ig is on the rise, revealing the decrease of sp3C in a-C:H
film. Generally speaking, the content of sp>C affects the hardness of DLC
films, however, the ratio of Ip to Ig alone does not reflect the actual
result of the film. The FWHM (G) results show that the high substrate
bias will increase the lattice distortion and disorder effect of the films,
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which will lead to higher strain distribution and film hardness [33,39,
40]. Besides, mechanical strength of a-C:H films rises with less bound H
content or C-H bond fraction [41]. The higher H content greatly reduces
the size of the annular sp? structure, while contributing to the passiv-
ation of the dangling bonds on the film surface, resulting in the trans-
formation of the C-C sp? structure to the C-H sp® structure. The large
amount of C-H sp® bonds lowers stress, steadily reducing the density and
strain in the sample [18,42]. So, as the bias voltage gets higher, the H
content decreases continuously, and the internal stress of the film cannot
be effectively relieved, which is the decisive factor for the improvement
of the hardness of the a-C:H film.

3.3. Friction and wear test

3.3.1. In ambient air

The friction curves of a-C:H films in ambient air are shown in Fig. 6a.
The friction coefficient of all films is found to have a run-in period,
which is reduced with an increase in the substrate bias. The friction
coefficient of S1 sample is as high as 0.23 and the sample were worn
through in the later stage of the experiment. The friction coefficient
continuously lowers when the bias voltage is raised, which was caused
by the decrease of the H/C ratio in a-C:H film [5]. In the process of
friction, oxygen and water vapor in air react on sliding surfaces to form
oxygen-containing groups [8], resulting in chemical and capillary force
[11,12]. At the same time, the interaction of hydrogen bonds between
the groups will also increase the friction coefficient during the sliding

75
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Fig. 4. Changes of (a) C 1 s spectra; (b)chemical bonding under varied substrate bias.
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Fig. 6. (a) Friction curves; (b) average friction coefficient and wear rate of a-C:H films in ambient air.

process [6]. As bias voltage rises, the unsaturated -CH bond decreases
and the number of oxygen containing groups formed by oxidation de-
creases, which is beneficial to the shortening of the run-in period and the
decrease of friction coefficient [43]. In addition, higher spZC content is
also advantageous for the formation of graphitized transfer film during
friction. The stable friction coefficient and wear rate of the film are
shown in Fig. 6b, and a reduction in the wear rate is seen when the bias
voltage is raised. This is because the hardness and H3/E? value of the
film are improved, and the resistance to plastic deformation is enhanced
[44]. However, the wear rate of a-C:H films under different bias voltages
is not monotonous. The minimum wear rate of 2.29 x 10~/ mm®>/Nm at
— 120 V bias is slightly increased to 2.52 x 10~/ mm?>/Nm at — 150 V.
This may be related to the decline of H content and the rise of sp*C
content, which leads to the occurrence of adhesion phenomenon.

The film marks on the sample surface and 9Cr18 steel ball are
analyzed, and the experimental outcomes are shown in the Fig. 7. Fig. 7
(a)-(c) illustrates the SEM morphology of the steel balls. The findings
indicate that the wear scar region of sample S1 is enormous, that a
substantial quantity of wear debris has collected around it, and that the
transfer layer on the surface of the steel ball is loose and discontinuous.
Although the transfer layer of S3 and S5 samples are still discontinuous,
the adhesion area increases, indicating the increase of graphitization in
the friction process. Fig. 7(d)-(f) shows the wear scars and 3D mor-
phologies of a-C:H film after friction test. The wear scar exhibits the
characteristic morphology of abrasive wear, with a prominent furrow
effect. The S1 sample has been worn through and the wear scar depth

exceeds the total thickness of the film, while the S3 and S5 samples have
a shallower wear scar depth. This is because the hardness of the film
increases gradually. Additionally, the load-bearing capacity increases,
so that the depth of wear scar decreases. Significant plastic deformation
is found on both sides of the wear scar, which is caused by the high
contact stress in the friction process [45]. S5 samples have a greater
furrow effect than S3 samples, which may be attributed to the
decreasing H concentration in the a-C:H film when the bias voltage is
increased. In this case, the 6 bond produced by the film itself or me-
chanical wear cannot be effectively passivated, thus causing a strong
adhesion in the sliding process [3,46].

3.3.2. In 3.5 wt% NaCl solution

Fig. 8a displays the tribological parameters of an a-C:H film
immersed in 3.5 wt% NaCl solution, which are significantly different
from the friction experienced in air. It can be clearly seen that the S1
sample exhibits relatively excellent lubrication performance. For
different samples, the performances of the a-C:H films in the early stage
of the friction are different. The friction coefficient diminishes contin-
ually in S1, S2 samples. The friction coefficient of the S3 sample also
decreased, but reached a stable stage after a short run-in period.
Different from the samples above, the friction coefficients of S4 and S5
samples first increased and then decreased. However, the friction coef-
ficient of all samples in the later stage of the test is basically the same,
about 0.045, suggesting good lubricity. Fig. 3b clearly demonstrates that
the S1 and S2 samples have a higher H content, which can effectively
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Fig. 8. (a) Friction curves; (b) average friction coefficient and wear rate of a-C:H films in 3.5 wt% NacCl solution.

passivate the unoccupied or free 6 bonds on the surface of the a-C:H film
[11]. Furthermore, due to the existence of a mass of free H inside the
film, the H atoms lost during the sliding process can be replenished,
terminating those ¢ bonds that may be exposed due to mechanical wear
or thermal desorption, which provides additional passivation to the film
surface, reducing the possibility of adhesion [10,47]. With the progress
of friction, the H stored in the film is continuously consumed and the
friction force increases, so the S1, S2 sample shows a friction coefficient
curve which decreases at first and then increases. However, because of
the low H content on the surface, more ¢ bonds produced by S4, S5 film
during the friction process, resulting in strong covalent bond in-
teractions, so the friction coefficient increases in the early stage. In
addition, during the friction process, the C-CH bond is broken up by
mechanical action and reacts with water molecules, and the carbon
atoms are combined with H atoms and OH groups generated by the
dissociation of water molecules, reducing friction through the formation
of hydrophilic hydrocarbon groups [9,48]. Fig. 8b shows the stable
friction coefficient and wear rate of a-C:H film in salt solution. Under

different bias voltage, the wear rate of the films are almost the same,
fluctuating around 1.8 x 10~% mm>/Nm. Only the S2 sample has a
slightly higher wear rate. When the substrite bias is lower, the film has
higher H content, which can effectively reduce the adhesion, but lower
hardness and less ability to resist frictional shearing forces. Even though
the hardness of the film becomes harder as the bias voltage gets higher,
fewer hydrocarbon groups were formed on the surface of the film,
resulting in greater wear at the beginning of the test. These reasons
above jointly affect the wear rate of a-C:H films.

Fig. 9 shows the 3D wear scar morphologies and cross-section curves
of S1 and S5 samples. For S1 samples (Fig. 9(a), (b)), the furrow effect is
more obvious on the surface of the a-C:H film, which is attributable to
the soft surface of the film cutted by abrasive debris generated during
the rubbing process, indicating that abrasive wear is the main wear
mechanism. The hardness of the S5 sample is higher than that of the S1
sample and a relatively smooth wear scar surface is generated. However,
due to the weak interaction between Al and graphite, the transfer film
cannot be attached to the Al;O3 ball, resulting in the increase of wear
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debris [49]. Especially in salt solution, owing to the fluidity of the water,
the wear debris is easier to migrate back to the friction surface [50],
causes the generation of grooves at the bottom of the wear scar. On the
basis of the results above, the composition diagrams of S1 and S5 sam-
ples are constructed as shown in Fig. 9(b), (d). Compared with S5
sample, S1 sample have relatively fewer sp2C content and smaller cluster
size, and there are more sp°C and H in the thin films. Except for majority
the hydrogen atoms paired with ¢ bonds, there are more free H in the
films in the form of molecules or atoms. In addition, there are also
partially double-hydrogenated surface carbon atoms, which further in-
crease the hydrogen density on the surface of the a-C:H film, providing
better shielding or passivation [12]. It is precisely because of these
differences in composition that S1 sample shows relatively better
tribological properties in salt solution.

3.4. Electrochemical behaviors

The previous reports have shown that the synergistic effect of friction
and corrosion accelerates the local exfoliation and failure of the film [51,
52]. In contrast, the wear scar of the a-C:H films that was detected
during the prior corrosion-friction test was shallow, without obvious
pitting or spalling, which indicates that the film possess strong resistance
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to corrosion. So, in order to evaluate the corrosion behavior of a-C:H
films in 3.5% NaCl solution, the electrochemical performance tests were
conducted. Fig. 10a shows the potentiodynamic polarization curves of
316 L stainless steel and a-C:H films under different bias voltages. In
contrast to 316 L stainless steel, the corrosion potential of a-C:H films
rises, whilst the corrosion current density falls, which manifests a good
anti-corrosion effect. It is clear from Fig. 10 that the polarization curve
of S5 sample is similar to that of the bare 316 L substrate, accompanied
by the occurrence of pitting corrosion. In addition, obvious pitting
corrosion also occurred in S1 sample. In contrast, the S2, S3, and S4
samples showed better corrosion resistance.

The electrochemical corrosion resistance of the films was determined
by calculating the corrosion potential (Eco;) and corrosion current
density (jeorr) using the Tafel extrapolation technique, and calculate
their polarization resistance (Rp) by Eq. (4) [53]:

_ Pxh
" 2.3034c00r (B, + B.)

Where B, and f. is the anodic and cathodic Tafel slope. The calcu-
lation results are shown in Table 2. After the deposition of the a-C:H
film, the corrosion current density of the 316 L substrate decreased by
about two orders of magnitude. With the increase of substrate bias, the
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Fig. 10. (a) Potentiodynamic polarization curves; (b) porosity (P) and protective efficiency (P;) of bare 316 L and a-C:H films coated in 3.5 wt% NaCl solution.
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Table 2

Sample electrochemical parameters.
Samples Ecoor Teoor Pa Pe Rp

W) (A/em?) (V/decade)  (V/decade)  (Qem?)

316 L steel -0.194 2.72E-08 0.233 0.110 1.20E+ 06
S1 0.027 5.79E-11 0.079 0.442 1.00E+ 09
S2 0.077 5.41E-11 0.268 0.243 5.00E+ 08
S3 -0.010 1.76E-10 0.235 0.149 2.30E+ 08
S4 -0.074 3.78E-10 0.395 0.104 9.50E+ 07
S5 -0.057 9.18E-10 0.208 0.137 3.90E+ 07

polarization resistance decreased continuously, indicating that the
corrosion resistance of the a-C:H film was weakened.

Because there are a few pinhole defects in the a-C:H film, the cor-
rosive electrolyte will infiltrate along the defects and cause local
corrosion. Therefore, the quantitative analysis of film porosity is
particularly important. According to the electrochemical parameters of
the substrate and the film, the porosity (P) of the film can be calculated
by Eq. (5) [54]:

Rp(Substrate)

p—_ PWOUDSHAI®) [ 2B, | 5
Rp(Film/Substrate) x )

where AE, is the difference in corrosion potential between the sub-
strate and the film covered substrate, 8, represents the slope of the
anodic Tafel on the substrate. In Eq. (6), the corrosion current density of
the substrate (i%,,) and the film-coated substrate (icoor) can also be uti-

lized to calculate the film protective efficiency (Py) [55]:

1

coor

P, = 100(1 JO—) 6)

The calculation results are shown in Fig. 10b. The porosity of the film
constantly increases as the bias voltage is raised, exposing more of the
substrate to the corrosive solution, and the protection efficiency
decreases.

The cross-section image in Fig. 2 indicates that all a-C:H layers under
different substrate bias exhibit dense amorphous structures, which is
beneficial to the improvement of the corrosion resistance of a-C:H films.
The a-C:H film formed under low substrate bias is relatively thicker and
thus has a longer corrosion path, which can delay the occurrence of
corrosion. In addition, the a-C:H film has a large H content under low
bias, and H atoms can promote the conversion of sp>C to sp°C on the
surface of the film, forming the dangling bonds of the surface configu-
ration. The reaction between adjacent dangling bonds will form a new
sp> carbon bond, which promotes the formation of a dense carbon
network on the surface of the film and plays a good sealing effect [56].
However, the surface of the sample is rougher at low bias voltage and the
size of the "island-like" structure is larger, which provides more active
sites for triggering the electrochemical corrosion reaction and promotes

S1 Mo+
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the occurrence of corrosion [57,58]. It has been shown by Raman and
XPS research that when substrate bias is increased, the sp>C content of
a-C:H films falls and the spC content rises. Due to the fact that sp?
hybridization is more favorable to electronic conduction, the formation
of electron transport channels by sp? hybridization makes the electro-
chemical corrosion response more severe [59]. Moreover, the corrosion
resistance of a-C:H film was also enhanced by the reduced residual stress
[60]. Besides the dense layer, the transition layer also has a great in-
fluence on the corrosion resistance of a-C:H film [18]. The SEM pictures
clearly show that when the substrate bias is increased, more obvious
columnar growth was observed in the Cr/CryCyH, transition layer,
which would lead to the generation of more microcracks and defects,
increasing electrolyte penetration and corrosion response.

According to the analysis above, the schematic diagram of pitting
corrosion mechanism for S1 and S5 samples is shown in Fig. 11.
Compared with the S5 sample, the thicker a-C:H layer of the S1 sample
prolonged the corrosion path and postponed the occurrence of pitting
corrosion. When the substrate bias voltage is — 30 V, the deposited a-C:
H films have higher surface roughness, which provides more active sites
and leads to the occurrence of pitting corrosion. When the substrate bias
voltage is — 150 V, the number and size of sp clusters increase, which
promotes the charge transfer. At the same time, many pore defects in the
Cr/CryCyH, transition layer also promote the penetration of the solution,
which deteriorates the corrosion resistance of S5 samples, leading to the
aggravation of pitting corrosion.

4. Conclusion

In order to meet the demand of lubrication requirements in marine
environment, the a-C:H films with outstanding tribological properties
were developed by PVD under different substrate bias. By adjusting the
substrate bias voltage, the composition, microstructure, friction per-
formance and corrosion resistance of the film can be tailored in a
convenient way. The influences by substrate bias on the performances of
the film were evaluated and studied systematically.

An increase in the substrate bias leads to an enhancement in the
sputtering and etching effects, as well as a reduction in the surface
roughness and thickness of the a-C:H film. The C-H bond was broken as a
result of the bombardment with high-energy particles and escaped as Ha,
which resulted in a decrease in the amount of hydrogen contained in the
film. In addition, an excessive amount of heat encourages the change of
sp°C to sp?C, which increases the graphitization of the thin films.
Because of the rise in bombardment energy and the reduction in the
amount of hydrogen present, both the internal stress and the hardness of
the films increased continuously. The tribological properties of a-C:H
films in ambient air and in saline solution are significantly different. In
the ambient air, it has been shown that the friction coefficient decreases
constantly as the substrate bias increases, reaching a value as low as

sp? cluster
€I chlorine ion

ﬁ‘* metal ion

Fig. 11. Schematic diagram of pitting corrosion mechanism for S1 and S5 samples.
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0.095 at a bias of — 150 V. During this procedure, the friction is mostly
determined by chemical force, capillary force, and oxygen-containing
groups. The tribological characteristics follow the opposite pattern in
a 3.5 wt% NaCl solution, in which the lowest average friction coefficient
of 0.028 emerged at the bias of — 30 V. Except for the S1 sample that
provides more active sites due to the rough surface and the S5 sample
that has a high sp? content and a columnar growth of the transition
layer, no pitting potential was found in the Tafel test for the rest of the
samples. After the deposition of the a-C:H film, the corrosion current
density of the samples dropped by 2-3 orders of magnitude in com-
parison to the 316 L substrate. Among them, the S2 sample has the
lowest corrosion current density (5.41 x1071'A/cm?) and the highest
protection efficiency (99.8%), exhibiting excellent corrosion resistance.
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