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a b s t r a c t   

FeCoNiCrMnMox high-entropy alloy (HEA) films were prepared by direct current (DC) magnetron co- 
sputtering. The influence of the Mo content on the microstructures and mechanical properties of the HEA 
films were systematically studied by X-ray diffraction (XRD), field emission scanning electron microscope 
(FESEM), Vickers hardness test and tribological test. The addition of Mo results in the formation of a denser 
film with refined grain size, and promotes the transformation from a face-centered cubic (FCC) phase to a 
mixture of FCC and body-centered cubic (BCC) phases. The hardness of the films increases from 8.5 GPa 
(x = 0) to 12 GPa (x = 1) and the friction coefficient decreases from 0.5 (x = 0) to 0.3 (x = 1), which greatly 
enhance the damage tolerance of the film. The improved mechanical and tribological properties of the HEA 
films are attributed to the formation of the hard BCC phase and grain refinement at high contents of Mo. The 
FeCoNiCrMnMox HEA films are suitable candidates for structural application as protective coatings. 

© 2021 Elsevier B.V. All rights reserved.    

1. Introduction 

High-entropy alloys (HEAs) is a category class of alloys, consisted 
of at least five principal elements in equiatomic or near equiatomic 
concentrations [1,2]. HEAs possess excellent properties due to its 
four core effects: high entropy effect, sluggish diffusion, lattice dis
tortion and cocktail effects [3,4]. In contrast to the most traditional 
binary and ternary alloys, HEAs have a disposition to form simple 
single-phase solid solution phase with face-centered cubic (FCC) 
structure, body-centered cubic (BCC) structure, densely arranged 
hexagonal closed-packed (HCP) structure or amorphous structure, 
rather than intermetallic compounds [5]. HEA films is a new type of 
films developed on the basis of HEA concept. HEA films exhibit many 
excellent properties, including high strength and hardness [6], ex
cellent wear resistance [7], corrosion resistance [8], irradiation re
sistance [9,10], high toughness [11], and thermal stability [12], which 
are incomparable by traditional films. 

As one of the most-studied HEAs, the FCC structured “Cantor 
alloy” or FeCoNiCrMn HEA exhibits excellent mechanical properties, 
such as high fracture toughness and strong creep resistance [13]. 
Like most FCC structured alloys, the Cantor alloy shows high 

ductility but low yield strength, usually below 400 MPa at 293 K  
[13,14]. Moreover, as compared with other HEA films, the Cantor 
alloy film shows relatively low hardness. The hardness of the Cantor 
alloy coatings prepared by plasma spraying and magnetron sput
tering were found to be ~270 HV and ~6 GPa, respectively [15,16]. In 
addition, the friction coefficient of the Cantor alloy film is very high 
at ~0.7. Therefore, it is imperative to enhance the hardness and 
friction properties of the Cantor alloy films for practical applications. 

Alloying has been used to tune various properties of materials for 
a long time. Previous studies have shown that alloying additions, 
such as N, Al, Mo, W, Si and C can be used to improve the mechanical 
properties of HEAs [17–19]. Xin et al. have reported that the addition 
of Si in the FCC structured Al0.2Co1.5CrFeNi1.5Ti0.5 HEA improved its 
hardness due to the formation of hard silicide and the interstitial 
solid solution strengthening of Si, but reduced its compressive 
strength and fracture toughness [20]. Ya et al. reported that owing to 
the addition of Al in the CoCrFeMnNiAlx films, the formation of 
nanotwins and BCC phases contribute to the strengthening effect of 
these HEA films [18]. 

It has been reported that the addition of Mo in CoCrFeNi or 
Al2CrFeNi with relatively large atomic radius (0.14 nm) not only 
improved the film strength and hardness through substitutional 
solid solution strengthening, but also reduced the wear rate of the 
film because of the formation of an oxide film on surface of the film 
that provides lubrication effect [21,22]. Furthermore, the yield 
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strength of the bulk Cantor alloy significantly increased with the 
addition of Mo, attributed to the phase transformation from an FCC 
phase to σ phase promoted by the addition of Mo [23]. Therefore, we 
suspected that the mechanical properties of the Cantor alloy films 
could also be enhanced by the addition of Mo, making them suitable 
candidates for structural applications in harsh environment. Till 
now, there is only one very recent study [24] focusing on the yield 
strength and fracture strain of a Mo-doped Cantor alloy film. 

In this study, five compositions of Mo are doped into FeCoNiCrMn 
to form FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films using 
magnetron co-sputtering of a Cantor alloy target and a Mo target at 
different powers (Fig. 1). As FeCoNiCrMn high entropy alloy is often 
referred to as Cantor alloy, we will adopt this and refer Cantor alloy 
in place of FeCoNiCrMn, and will refer FeCoNiCrMnMox as Mo-doped 
Cantor alloy to stay conceptually clearer. X-ray diffraction (XRD), 
field-emission scanning electron microscope (FESEM) and na
noindentation are employed and the microstructures, compositions, 
mechanical properties, and wear properties were systematically 
investigated. It was found that with increase of Mo, the hardness 
increased and the friction coefficient decreased. The relationship 
between the microstructure, mechanical properties, and wear re
sistance is discussed in detail. 

2. Materials and methods 

FeCoNiCrMnMox HEA films were deposited by co-sputtering a 
Cantor alloy target (FeCoNiCrMn) and a Mo target (101.6 mm in 
diameter), both of purity higher than 99.9 wt%. More details on the 
co-sputter deposition system are provided elsewhere [25]. Silicon 
wafers and 304 stainless steels were used as substrates. Prior to 
deposition, the substrates were cleaned using acetone, ethanol and 
deionized water in sequence, with each step being 15 min. The base 
pressure of the deposition chamber was pumped to below 3 × 10−6 

Torr. In order to remove possible contaminations on the target 

surface and to balance the surface composition of the targets, the 
Cantor alloy target and the Mo target were pre-sputtered using Ar+- 
ion bombardment for 15 min. The deposition of the CoCrFeMnNiMox 

thin films was performed at a chamber pressure of 3.9 × 10−3 Torr. 
The power of the HEA target was fixed at 400 W, while the power of 
the Mo target varied from 0 to 90 W to adjust the Mo content in the 
deposition films. The substrate was rotated at 15 Round/min to en
sure homogeneity in elements distribution. The substrate bias power 
is 50 W. The deposition time was controlled to ensure a uniform 
thickness of ~1 µm for all films. 

The crystalline structures and compositions of the films were 
examined by X-ray diffraction (Rigaku TTRAX 3) with Cu Kα 
(λ = 0.15406 nm) radiation, scanning angle, 2θ, ranged from 20° to 
100° and the electron probe X-ray microanalyzer (EPMA, JEOL JXA- 
8200). The surface morphology and film thickness were analyzed 
using a thermal field emission scanning electron microscope (JSM- 
7800 F(JEOL)). The hardness was surveyed by Hysitron TI 950 
Triboindenter (Bruker, Minneapolis, MN, USA) using a Berkovich 
indenter with a tip radius of 100 nm. In order to eliminate the in
fluence of the substrate on the measurements, the indentation depth 
was less than 1/10 of the thickness of all the films. The tests were 
repeated at least five times to reduce errors. The friction and wear 
properties of the resultant films were analyzed by using a ball-on- 
disc friction and wear tester (MF TR-4000, China), with an additional 
force of 1 N and a friction time of about 30 min. The wear test was 
repeated three times. 

3. Results 

3.1. Compositions and Crystalline Structure of the FeCoNiCrMnMox 

HEA films 

The Cantor alloy target has an elemental composition (at%) of 
20.88  ±  1.43% of Fe, 20.04  ±  1.07% of Co, 18.39  ±  0.78% of Ni, 
20.74  ±  0.90% of Cr, and 19.95  ±  0.65% of Mn. The contents of Fe, Co, 
Ni, Cr and Mn were approximately equivalent to the nominal 
equiatomic percentage of 20 at%. The chemical compositions of the 
resultant HEA films are presented in Table 1. We assumed that the 
contents of six elements (Fe, Co, Ni, Cr, Mn and Mo) were equivalent 
to the nominal equiatomic percentage of 16.67 at%. Thus, according 
to the different Mo content in the film, it was named as Mo0, Mo0.25, 
Mo0.6, Mo0.8 and Mo1. The element content in the Mo0 film was 
different from that of the Cantor alloy target owing to different 
sputter yields of each element [26]. The Mo content of the films 
increased as sputtering power of the Mo target increased from 0 to 
90 W. Fig. 2 shows the surface distribution of each element in the 
Mo0.6 film. It can be seen that all elements, i.e., Fe, Co, Ni, Cr, Mn and 
Mo, are uniformly distributed across the sample surface. 

The surface morphology of the Mo-doped Cantor alloy films is 
shown in Fig. 3. As is shown, there are some pores on the films. 
When the Mo content increased, the film became denser, evidenced 
by the reduced diameter of the pores on the film surfaces. The cross 
sectional FESEM images of the Mo-doped Cantor alloy films are 
presented in Fig. 4, showing a columnar structure for all films, si
milar in other literatures [27]. There are no defects and cracks 

Fig. 1. Schematic diagram of the direct current magnetron sputtering deposition 
system. 

Table 1 
Elemental composition of resultant Mo-doped Cantor alloy films.          

Mo/Power (W) Fe (at%) Co (at%) Ni (at%) Cr (at%) Mn (at%) Mo (at%) x  

0  22.79  21.76  19.67  22.84  12.94  0  0 
20  21.07  22.80  18.92  20.96  11.93  4.32  0.25 
50  17.91  19.60  18.90  20.31  11.45  10.84  0.6 
70  20.30  19.33  16.15  19.50  10.30  14.43  0.8 
90  17.20  18.81  16.75  19.39  11.19  16.67  1    
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observed at the interface, indicating that all the films are well ad
hered on the substrates. 

The XRD results of the HEA films (Fig. 5) show that films present 
a simple FCC solid solution structure. The diffraction peaks at 43.7°, 
51.5°, 74.9° and 90.1° correspond to the (111), (200), (220) and (311) 
of the FCC phase. This result agreed with previous reports [24], in
dicating that the FCC solid solution phase with good crystallinity. 
Additional diffraction peaks observed at 45.9° in the XRD pattern of 
the film prepared at Mo target of 20 W indicate the formation of the 
BCC phase caused by the incorporation of Mo. The (200), (220) and 
(311) diffraction peaks of the FCC phase gradually weakened with 
increasing the Mo content. At the same time, the diffraction peaks of 
(110) and (211) of the BCC phase appeared and gradually 

strengthened. Thus, the FeCoNiCrMnMox HEA films exhibit the du
plex FCC+BCC phase structure. This result is agreed with reference  
[14], which showed that the phase structure of the FeCoNiCrMn- Alx 

film changes from FCC to coexistence of FCC and BCC after doping of 
Al. Moreover, the full width at half maximum (FWHM) of each peak 
gradually increased with the increasing of Mo, indicating that the 
grain size decreased as the Mo content increased [24]. The grain 
sizes corresponding to each peak of the FCC phase and the BCC phase 
were calculated by using the Scherrer formula [28]. The crystalline 
size of resultant Mo-doped Cantor alloy films is listed in Table 2. 
Obviously, the average grain size decreases with increasing the Mo 
content, and the smallest grain size was observed in the Mo1 

HEA film. 

Fig. 2. EDS mapping of the resultant Mo0.6 film surface. All the elements are uniformly distributed across the sample surface.  

Fig. 3. FESEM images of the surface of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA film. (a)x = 0; (b)x = 0.25; (b)x = 0.6; (d)x = 0.8; (e)x = 1. The diameter of the pores reduced with 
increasing the Mo content, indicating that the films became denser. 
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The lattice constant of FCC phase structure, atomic size difference 
(δ) and valence electron concentration (VEC) (defined by Eqs. (1) and 
(2) [29–31]) as a function of the Mo are shown in Fig. 6 showing the 
lattice constant increased with the increase of Mo content, as the 
atomic radius of Mo is larger than that of other elements. 

=
=

c r r100 • (1 / ¯)
i

i i
1

n
2

(1)  

=
=

VEC c VEC( )
i

n

i i
1 (2) 

Where n is the number of the constituent elements in the films, ci is 
the atomic percentage of the ith element, ri is the atomic radius of 
the ith element, = =r c r¯ i

n
i i1 is the average value of the atomic radius 

and (VEC)i is the VEC of the ith element. The influences of Mo con
tent on the δ and VEC is shown in the Fig. 6(b). For Cantor alloy film, 
δ and VEC are ~1.13% and 8.02, respectively. With the addition of Mo 
element, the δ value of the films gradually increased from 1.13% to 
4.20% (x = 1), and the value of VEC gradually decreased from 8.02 to 
7.69 (x = 1). 

The hardness of the films as a function of Mo content are shown 
in Fig. 7. For the Cantor alloy film, the hardness is around 8.5 GPa, 
which is higher than the bulk HEA (~160 HV) [32], and also higher 
than the Cantor alloy film doped with the other element [18,28]. As 
the Mo content increased, the hardness of the films gradually in
creased to ~12 GPa (x = 1). 

The friction coefficient (COF) curves for the Mo-doped Cantor 
alloy films with various Mo content sliding against Si3N4 ball are 
displayed in Fig. 8. It can be seen that the friction coefficient curves 
of all films increased sharply in the initial stage, which corresponds 
to the run-in period, and then reached a relatively steady state. The 
average COF of the film without Mo is around 0.5. The COF of the film 
gradually decreases with increasing the Mo content, and reaches the 
minimum value of 0.3. Fig. 9 shows the friction trajectory surface 
and elemental mapping images of the Mo-doped Cantor alloy films 
after sliding in the atmosphere. The wear track widths of the films 
with Mo content of 0, 0.25, 0.6, 0.8 and 1 were 267.92, 237.5, 225.0, 
221.67 and 204.17 µm, respectively. It can be seen that the films with 
low Mo contents have more debris and the deeper friction marks on 
the wear tracks after friction. There are less debris and shallower 
friction marks on the wear tracks of the film with high Mo content. 

Fig. 4. Cross sectional FESEM images of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films. (a)x = 0; (b)x = 0.25; (b)x = 0.6; (d)x = 0.8; (e)x = 1. No defects or cracks were observed at 
the interface, indicating that all the films are well adhered to the substrates. 

Fig. 5. XRD patterns of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films. With the 
addition of Mo, the phase structure of the films changed from a single FCC to the 
coexistence of FCC and BCC, and the grain sizes synchronously decreases. 

Table 2 
The crystalline size of resultant Mo-doped Cantor alloy films.           

Crystalline size (nm) Average crystalline 
size (nm) 

FCC BCC 

(111) (200) (220) (311) (110) (211)  

Mo0  10.06 38.20 42.90 26.52 – –  28.90 
Mo0.25  13.42 30.25 43.63 20.54 6.30 –  22.93 
Mo0.6  37.63 – – – 1.38 23.73  20.95 
Mo0.8  37.44 – – – 1.38 23.70  20.84 
Mo1  4.94 – – – 6.04 7.27  6.08 
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The film with high Mo content presents a good friction performance. 
From the element mapping images, we also see C and O element, 
possibly coming from C and O absorbed by the sample during sto
rage in the atmosphere. The other elements, i.e., Fe, Co, Ni, Cr, Mn 
and Mo, are uniformly distributed across the sample surface. In 
addition, Co, Ni, Mn and Mo elements are less distributed in the 
wear tracks. Fe and Cr elements are more distributed in the wear 
tracks, possibly influenced by the 304 stainless steel substrates. 

4. Discussion 

As mentioned above, all the HEA films show columnar structure. 
It is well known that the mean free path of particle motion is much 
greater than the distance between the substrates and the targets 
when the pressure ≤ 0.1 Pa during the deposition process [33]. There 
are few collisions between the particles, and the energy loss is small. 
Thus, the kinetic energy of the particles is converted into the energy 
for film growth and crystallization. Therefore, all the films grown 
present columnar structure. Moreover, the film becomes denser and 
the grain size decreases with increasing power of the Mo target. 
High target power exerts strong ion bombardment and sputtering 
target materials on the films during the deposition process, there
fore, more energy is transferred to the films. Consequently, the 
density of the films increases and the grain size of the films de
creases at higher target powers [34]. In addition, during the de
position process, the self-shadowing effect was inhibited owing to 
the enhancement of the ion bombardment effect. Therefore, as the 
Mo target power increased, the growth of columnar grain is hin
dered and the defects decreased. 

With the addition of Mo, the phase structure of the film changes 
from single FCC to the coexistence of FCC and BCC, that can be ex
plained from the perspective of thermodynamics. Guo et al. [31] 
pointed out that the VEC can be carried out to forecast the phase 
structures of HEAs. When VEC <  6.87, a single BCC phase exists, FCC 
and BCC coexistence if 6.87 ≤ VEC <  8.0, and a single FCC phase exists 
if VEC ≥ 8.0. Meanwhile, Zhang et al. [35] pointed out that the δ play 
an important role in phase selection of HEAs and it can be employed 
to estimate the formation of simple solid solutions. A solid solution 
phase tends to form when δ ≤ 6.6%. Previous studies have shown that 
the addition of alloying elements with a large atomic radius in
creases the lattice distortion and results in the structure collapse and 
forming a new phase [36]. For present Mo-doped Cantor alloy films, 
the FeCoNiCrMn can be regarded as the solvent matrix, and the 

Fig. 6. (a) Lattice constant of FCC structure and (b) the atomic size difference (δ) and the VEC of FeCoNiCrMnMox HEA films as functions of Mo content. With increasing Mo 
content, the lattice constant and δ increase and the VEC decreases, indicating that the addition of the Mo would lead to the severe lattice distortion and the structural instability. 

Fig. 7. Hardness of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films. The hardness of 
the FeCoNiCrMnMox films gradually increased from ~8.5 GPa (x = 0) to ~12 GPa (x = 1). 

Fig. 8. Friction coefficient curves of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films. 
The friction coefficient decreases from 0.5 to 0.3 (a reduction of 40% at x = 1) with the 
addition of the Mo element, indicating that the Mo content has a certain effect on the 
friction coefficient of these films. 
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Fig. 9. Friction trajectory surface images of FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films: (a)x = 0; (b)x = 0.25; (b)x = 0.6; (d)x = 0.8; (e)x = 1, and element mappings of the 
same region (a1) (a1) (b1) (c1) (d1) (e1): C, (a2) (b2) (c2) (d2) (e2): O, (a3) (b3) (c3) (d3) (e3): Fe, (a4) (b4) (c4) (d4) (e4): Co, (a5) (b5) (c5) (d5) (e5): Ni, (a6) (b6) (c6) (d6) (e6): Cr, 
(a7) (b7) (c7) (d7) (e7): Mn, (b8) (c8) (d8) (e8): Mo. The width and depth of the wear tracks gradually decline with increasing Mo content, indicating the films with high Mo 
content present a good friction performance. 
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larger atomic-sized Mo as the solute. The VEC value of the Mo-doped 
Cantor alloy film reduces from 8.02 (x = 0) to 7.69 (x = 1), and the 
phase structure transfers from FCC to the coexistence of FCC and 
BCC, which is well verified and conforms to Guo's theory [31]. Al
though the δ value of the Mo-doped Cantor alloy films increases 
from 1.13% (x = 0) to 4.20% (x = 1), it is still less than 6.6%, and thus 
intermetallic compounds were formed, which confirms Zhang's 
theory well [35]. In addition, Mo element with BCC phase structure 
may have a strong influence on the film to form BCC phase. It is 
worth noting that unlike bulk FeCoNiCrMnMox that has the coex
istence of FCC and Sigma phase, the corresponding film does not 
present the Sigma phase which agreed with the previous study [24]. 
The rapid cooling rate during the film deposition inhibits the for
mation of a secondary phase in the films [24]. 

The hardness of the Mo-doped Cantor alloy films increases 
obviously with the increase of Mo, attributed to the combined 
effect of solid solution strengthening, formation of hard BCC 
phase, grain refinement and the densification of the structure. 
First, the addition of Mo results in severe local lattice distortion, 
thus enhancing the solid solution strengthening effect [37]. 
Compared with Fe, Co, Ni, Cr and Mn atoms with an atomic radius 
of 1.26, 1.25, 1.24, 1.28 and 1.27 Å, respectively [18], the atomic 
radius (1.40 Å) of Mo atom is relatively larger. Large atomic radius 
Mo atoms exist in the crystal structure as the substitutional 
atoms, forming a substitutional solid solution, which increases 
the lattice constant and lattice distortion of the film [38]. Thus, 
the higher the Mo content, the more severe the lattice distortion, 
the stronger the solid solution strengthening effect, and the 
higher the hardness. Second, with the addition of Mo, in addition 
to the FCC phase, harder BCC phase tends to form. It well known 
that material with FCC structure presents low strength and 
high plasticity [39]. In contrast, material with BCC structure shows 
high strength and low plasticity [40]. From the XRD results, the 
phase structure of the film changes from single FCC to the coex
istence of FCC and BCC. Thus, the Mo-doped Cantor alloy film 
gradually changes from a relatively softer, single FCC phase to a 
mixture of FCC and harder BCC phases, resulting in the higher 
hardness at higher Mo contents. Third, grain and phase boundary 
strengthening also contribute to higher hardness at higher Mo 
contents [41]. The phase transformation from FCC phase to 
σ phase caused by the incorporation of Mo into the bulk FeCrNi
CoMn HEA increases the density of phase boundary, which acts as 
obstacle to dislocation slip and increases the strength [23]. As 
mentioned above, the averaged grain size of the films decreases 
with increasing the Mo content. Thus, according to the classical 
Hall-Petch effect, the films become harder with the reduction of 
the grain size [42]. Last but not least, previous studies have in
dicated that densification has an important effect on the hardness 
of HEA films [43]. As the Mo content increased, the defects and 
pores of the film decrease, the film becomes denser, thus, the 
hardness also increases. 

As mentioned earlier, COF of the films decreases with the in
crease of Mo, COF of the Mo-doped Cantor alloy films remain at 
around 0.3 when x = 1. The largest drop in COF is 40%. There are some 
debris on the wear tracks of all the films, indicating that the films 
suffered from abrasive wear. However, with increasing the Mo 
content of the film, the amount of wear debris, the depth and width 
of the wear scars all decrease, which indicates that the friction 
performance of the film has been enhanced with the increase of Mo 
content. This is owing to the improved hardness of the films at 
higher Mo contents. According to previous studies, the friction per
formance of the film is tightly related to the hardness of the film  
[44]. Therefore, the films with higher hardness tend to show better 
friction performance. Based on factors aforementioned, Mo doping 
enhances the mechanical properties of HEA films including hardness 
and wear resistance. 

5. Conclusions 

FeCoNiCrMnMox (x = 0, 0.25, 0.6, 0.8, 1) HEA films prepared by DC 
magnetron co-sputtering without additional heating show uniform 
distribution of all the six elements across the film surface. All the 
films are adhered well to the substrates. With increasing the Mo 
content, the films become denser, and the phase structure gradually 
changes from a single FCC phase to a mixture of FCC and BCC phases. 
Meanwhile, the grain size decreases, lattice constant increases and 
from no Mo to Mo = 1, the hardness increases by 41% from 8.5 GPa to 
12 GPa, the friction coefficient decreases by 40% from 0.5 to 0.3. The 
addition of Mo greatly improves the mechanical and tribological 
properties of the FeCoNiCrMn high-entropy film. 
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