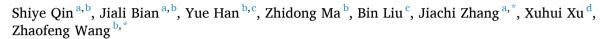
ELSEVIER

Contents lists available at ScienceDirect


Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Research Papers

Intense and efficient green mechanoluminescence in $\text{CaLaAl}_3\text{O}_7$ through Tb^{3+} doping

- a National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
- b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- ^c School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
- d College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China

ARTICLE INFO

Keywords:

A. Inorganic compounds

b. Luminescence

d. Phosphors

ABSTRACT

In this work, an efficient mechanoluminescent material with green emitting color, $CaLaAl_3O_7:Tb^{3+}$, is reported. The mechanoluminescent intensity of $CaLaAl_3O_7:Tb^{3+}$ is dependent on the content of luminescent centers, and the optimum doping concentration of Tb^{3+} is determined to be 6.0%, whatever the sample is stimulated by stretching or rubbing. The temperature-dependent properties suggest that the mechanoluminescence of $CaLaAl_3O_7:Tb^{3+}$ should come from the released carriers from traps under stress stimuli, and therefore the underlying mechanoluminescent mechanisms of $CaLaAl_3O_7:Tb^{3+}$ is revealed. By comparing with the commercial ZnS:Cu, a well-known mechanoluminescent material with high efficiency, the $CaLaAl_3O_7:Tb^{3+}$ exhibits an even higher intensity when tested at the same conditions. It suggests that $CaLaAl_3O_7:Tb^{3+}$ is a very efficient mechanoluminescent material, showing promising applications in the new generation of lighting, displaying and sensing devices.

1. Introduction

Mechanoluminescence (ML) is a light-emitting phenomenon when a material is stimulated by various mechanics, such as compressing, stretching, bending, rubbing, impact, etc. [1-4]. Compared with the other types of luminescence, ML has great advantages in energy saving and convenience, and therefore it shows wide application prospects in the fields of lighting, displaying, and visualized sensing [5-10]. In the above applications, ML material with green emission color plays a key role, because green is one of the most easily captured colors for human eyes. At present, three kinds of systems, i.e., ZnS:Cu, CaZnOS:Tb³⁺ and SrAl₂O₄:Eu²⁺,Dy³⁺, are well-accepted as the green ML materials with high performance [11-13]. However, ZnS:Cu and CaZnOS:Tb³⁺ contain the sulfur source, resulting in the environmental pollution during synthesis. For the system of SrAl₂O₄:Eu²⁺,Dy³⁺, the prominent long afterglow behavior causes inevitable interference on the measurement and analysis of ML signal [14,15]. Herein, it is necessary to develop novel ML materials with green emitting color towards environmental protection, high ML efficiency and free from afterglow interference.

The selection of matrix and doped ion is extremely important in the design of luminescent materials. Aluminate $ABAl_3O_7$ with melilite structure (A is Ca, Sr or Ba, and B is La, Gd or Y) is an important matrix for luminescence, which belongs to $P42_1m$ space group with a layered structure formed by $[AlO_4]^{5-}$ tetrahedra [16,17]. Structural analysis shows that A^{2+} and B^{3+} are both eight coordinated occupying the same 4e sites, and hence there are abundant defects/traps in the $ABAl_3O_7$ matrix itself, which could be further regulated by rare earth ion doping [18]. This provides great feasibility for the generation of ML [19]. For the doped ions, Tb^{3+} is a well-known activation ion with green emitting color, which is produced by the typical $^5D_4 \rightarrow ^7F_J$ (J=3,4,5,6) transitions. The dopant of Tb^{3+} has the advantages of large absorption coefficient, high luminescence intensity and stable luminescence [20,21]. Therefore, it is feasible to achieve green ML by doping Tb^{3+} ions in the melilite structure.

Inspired by the above considerations, in this work, we doped Tb^{3+} in a typical melilite structure, $CaLaAl_3O_7$, and investigated its ML properties. The results suggest that $CaLaAl_3O_7$: Tb^{3+} exhibits extremely intense green ML, which is even higher than that of the commercial ZnS:

E-mail addresses: zhangjch@lzu.edu.cn (J. Zhang), zhfwang@licp.cas.cn (Z. Wang).

https://doi.org/10.1016/j.materresbull.2021.111535

Received 15 July 2021; Received in revised form 10 August 2021; Accepted 23 August 2021 Available online 28 August 2021 0025-5408/© 2021 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors.

Cu. By understanding the stimulation/activation and radiative transfer processes, the underlying mechanisms of CaLaAl₃O₇:Tb³⁺ is revealed.

2. Experimental

2.1. Synthesis of CaLaAl₃O₇:Tb³⁺ powders

A series of CaLaAl $_3$ O $_7$:xTb $^{3+}$ (x=4.0%, 5.0%, 6.0%, 7.0%, 8.0%) powders were synthesized by a high-temperature solid-state method. The raw materials of CaCO $_3$ (99.99%), La $_2$ O $_3$ (99.99%), Al $_2$ O $_3$ (99.70%), and Tb $_4$ O $_7$ (99.99%) were accurately weighed by stoichiometric ratios and put into an agate mortar. Then, the mixture was dispersed in a certain amount of alcohol and fully ground. After that, the mixture was transferred into a corundum crucible and placed in a muffle furnace. The mixture was kept at 1600 °C for 5 h in a reducing atmosphere composed of nitrogen and hydrogen (90%N $_2$ and 10%H $_2$ in volume ratio). After cooling to room temperature, the sample was taken out and CaLaAl $_3$ O $_7$: Tb $^{3+}$ was finally obtained.

2.2. Preparation of CaLaAl₃O₇:Tb³⁺/PDMS composites

Polydimethylsiloxane (PDMS) was chosen as the flexible matrix for CaLaAl $_3$ O $_7$:Tb $^{3+}$ powders to facilitate the ML measurement and analysis. First, 2.0 g of PDMS precursor and 0.2 g of curing agent were placed in a dumbbell-shaped mode with a effective length of 25 mm and a width of 10 mm. Then, 1.0 g of the CaLaAl $_3$ O $_7$:Tb $^{3+}$ powders were mixed. After mechanical stirring for 30 min, the mixture was put into a vacuum oven at room temperature and -8.6×10 4 Pa for 15 min. Finally, the sample was cured at 70 °C for 1 h in a regular oven, and the CaLaAl $_3$ O $_7$:Tb $^{3+}$ / PDMS composite elastomer was obtained.

2.3. Characterizations

X-ray diffractometer (XRD) of Auriga Shimadzu/XRD-6100 was used to analyze the crystalline structure of the phosphor. The working voltage is maintained at 220 V, and the excitation source is Cu K α (1.54056 Å) with a scanning step of 0.02° and a scanning speed of 10° /min in a scanning range of 10° - 80° . The micro-morphology and elemental distribution of CaLaAl₃O₇:Tb³⁺ powders were characterized by a field emission scanning electron microscopy (FE-SEM, JSM-6701F, Hitachi) and scanning electron microscopy (EDS, JSM-5601LV, Hitachi), respectively. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were recorded using a fluorescence spectrometer (Omni-300i) with Xe900 lamp (500 W) as excitation source. The thermoluminescence (TL) curve was detected by a FJ-427A TL measuring

instrument. The stretching experiments of CaLaAl $_3$ O $_7$:Tb $^{3+}$ /PDMS elastomer were conducted on a self-made tensile testing machine, with the effective sample size of $25\times10\times2$ mm, the stretching frequency of 3 Hz and the maximum stretching strain of 80%. The rubbing experiments were operated on a rotary friction testing machine (MS-T3001) using the stainless-steel rod (radius: 0.2 mm) as the friction pair. The applied load and rotational speed were set to 4.9 N and 200 r/min, respectively. The produced ML signals during mechanics stimuli were collected through a spectrometer (Omni- λ 300i, Zolix Instruments Co, Ltd) equipped with a CCD camera (IVAC-316, Edmund Optics Ltd.).

3. Results and discussion

Fig. 1a shows the XRD patterns of the CaLaAl₃O₇:xTb³⁺ (x=4.0%, 5.0%, 6.0%, 7.0%, 8.0%) samples synthesized by the solid-state method. It is observed that all diffraction peaks match well with the standard JCPDS card (No.81-1719), indicating that the as-synthesized samples are of single phase and the doping of Tb³⁺ in CaLaAl₃O₇ could not arouse any impurity peaks. It is also found in Fig. 1a that with the increase of the doping concentration of Tb³⁺, the (211) peak at 30.904° exhibits a slight shift to high position. According to the Bragg's law $2d\sin\theta = n\lambda$, where d is the spacing of the parallel atomic plane, λ is the wavelength of the incident wave, and θ is the angle between the incident light and the crystal plane, the increased θ value of (211) peak corresponds to the decrease of d spacing with the increase of the Tb^{3+} content. Hence, it suggests that Tb3+ should substitute the cations in CaLaAl3O7 with a larger ionic radius. By comparing the ionic radius of Ca²⁺ (CN=8, R_{Ca}^{2+} =0.112 nm), La³⁺ (CN=8, R_{La}^{3+} =0.116 nm) and Al³⁺ (CN=4, R_{Al}^{3+} =0.039 nm) and Tb³⁺ (CN=8, R_{Tb}^{3+} =0.104 nm), and combining the Hume-Rothery principle, it is determined that Tb³⁺ should occupy the lattice position of La³⁺ [22,23]. Fig. 1b presents the crystal structure of CaLaAl₃O₇, which has a layered melilite structure with a space group of $P42_1m$. The layer of the compound is composed of $[AlO_4]^{5-}$ tetrahedra formed by Al and O through four coordination. The interlayer is composed of Ca²⁺ and La³⁺ cations with octahedral Cs symmetry by alternating distribution. The alternating layer is conducive to the direct excitation of rare earth ions from the ground state energy level to the excited state energy level, which provides the effective pathways for the doped rare earth ions to emit various luminescence [24].

SEM and EDS mappings were further employed to investigate the morphology and chemical composition of the CaLaAl $_3$ O $_7$:Tb $^3+$. As shown in Fig. 2a and b, the as-synthesized CaLaAl $_3$ O $_7$:Tb $^3+$ exhibits a remarkable layered structure which is in good agreement with its crystal characteristics. The EDS mappings in Fig. 2c confirm that the sample is composed of Ca, La, Al, O and Tb. All of the results raised by XRD and

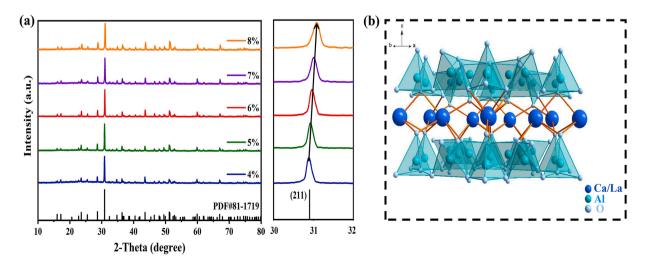
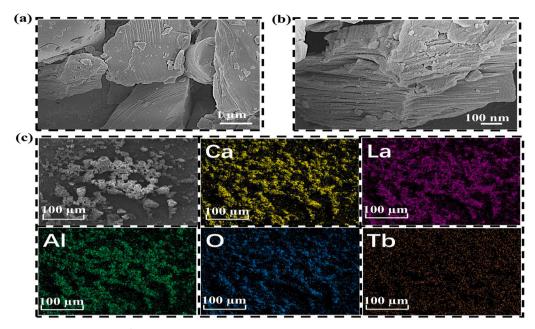
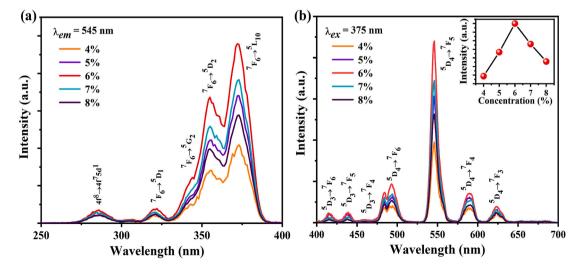


Fig. 1.. (a) XRD patterns of CaLaAl₃O₇:xTb³⁺ (x=4.0%-8.0%) samples; (b) Crystal structure of CaLaAl₃O₇.




Fig. 2.. SEM images of CaLaAl₃O₇:6%Tb³⁺ in a relatively (a) low and (b) high magnification; (c) EDS mappings of the CaLaAl₃O₇:6%Tb³⁺ sample.

SEM suggest that single phase CaLaAl $_3$ O $_7$:Tb $^{3+}$ with a layered structure has been successfully obtained.

After doping Tb^{3+} ions, the samples could exhibit intense PL. Fig. 3a shows the excitation spectra of the as-synthesized CaLaAl₃O₇:Tb³⁺ monitored at 545 nm. The excitation peaks at 285, 320, 344, 354 and 375 nm should be originated from the characteristic transitions of Tb³⁺ ions in the pathways of $4f^8 \rightarrow 4f^75d^1$, $^7F_6 \rightarrow ^5D_1$, $^7F_6 \rightarrow ^5G_2$, $^7F_6 \rightarrow ^5D_2$ and ${}^{7}F_{6} \rightarrow {}^{5}L_{10}$, respectively [25,26]. When excited by a 375 nm light, the CaLaAl₃O₇:Tb³⁺ exhibits characteristic emissions of Tb³⁺ at 415, 438, 457, 493, 545, 590 and 623 nm (as shown in Fig. 3b), attributed to the transitions of ${}^5D_3 \rightarrow {}^7F_J$ (J=6, 5, 4) and ${}^5D_4 \rightarrow {}^7F_J$ (J=6, 5, 4, 3), respectively [27,28]. It is observed in both of the excitation and emission spectra that the luminescent intensity is strongly dependent on the doping concentration of Tb^{3+} , and the optimum Tb^{3+} content is 6.0%. This is because with the increase of Tb³⁺ doping concentration, the luminescent centers increase, and the luminescence intensity increases accordingly. However, when the concentration of Tb³⁺ increases to a certain extent with the distance between luminescence centers less than the critical value, the cross-relaxation between luminescence centers

will be dominant, resulting in non-radiative transitions and luminescence quenching [29].

To facilitate the ML investigation, CaLaAl₃O₇:Tb³⁺ powders were further composited into PDMS flexible matrix because of its high transparency and efficient stress transfer ability [30]. When stimulated by stretching or rubbing, the CaLaAl₃O₇:Tb³⁺ samples embedded in PDMS elastomer exhibit intense green ML, as shown in Fig. 4. The ML spectra of CaLaAl₃O₇:Tb³⁺ in Fig. 4a and b are similar with its PL properties that it presents characteristic emissions of Tb^{3+} at 411, 435, 455, 491, 544, 589 and 622 nm, corresponding to the transitions of $^{5}D_{3} \rightarrow ^{7}F_{J}$ (J=6, 5, 4) and $^{5}D_{4} \rightarrow ^{7}F_{J}$ (J=6, 5, 4, 3), respectively [31]. It suggests that the emitting processes of the ML of CaLaAl₃O₇:Tb³⁺ should also come from the radiative transfer among the energy levels of Tb³⁺. Fig. 4c and d show the ML intensity variations of CaLaAl₃O₇:Tb³⁺ in PDMS along with the change of the Tb³⁺ concentration under the stimulation of stretching and rubbing. It is obvious that with the increase of the doping concentration of Tb3+, the ML of CaLaAl3O7:Tb3+ increases first and then decreases due to the concentration quenching, and the optimum doping content of Tb³⁺ for the ML is also determined to

Fig. 3.. (a) Excitation spectra of CaLaAl₃O₇:xTb³⁺ (x=4.0%, 5.0%, 6.0%, 7.0%, 8.0%) monitored at 545 nm; (b) Emission spectra of CaLaAl₃O₇:xTb³⁺ (x=4.0%, 5.0%, 6.0%, 7.0%, 8.0%) under the excitation of 375 nm; the inset in (b) shows the PL intensity variations with the increase of Tb³⁺ content.

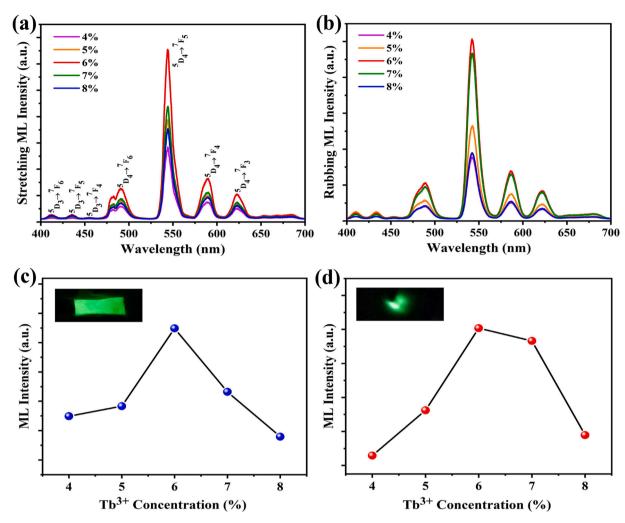


Fig. 4.. ML spectra of CaLaAl₃O₇:xTb³⁺(x=4.0%, 5.0%, 6.0%, 7.0%, 8.0%)/PDMS composites under the stimulation of (a) stretching and (b) rubbing; ML intensity variations of CaLaAl₃O₇:xTb³⁺ accompanied by the change of Tb³⁺ concentration under the stimulation of (c) stretching and (d) rubbing; the insets in (c) and (d) present the ML photos of the CaLaAl₃O₇:xTb³⁺ in PDMS elastomer under stretching and rubbing, respectively.

6.0%.

In addition to the emission properties, it is necessary to reveal the stimulation/activation processes of the ML of CaLaAl₃O₇:Tb³⁺ to understand the underlying ML mechanisms. Fig. 5 shows the TL and ML properties of the CaLaAl₃O₇:Tb³⁺ after various heat treatments from 298 to 473 K. It is observed in Fig. 5a that with the increase of the treated temperature, the TL intensity of CaLaAl₃O₇:Tb³⁺ is gradually decreased with the spectra narrowed and red-shifted. This is because that the preheat treatment could clear the carriers in the shallow trap first and then those in the deep trap [32]. The detailed trap information in CaLaAl₃O₇: Tb³⁺ including the trap types and trap depths could be revealed following the Eqs. (1)-(2)[33,34],

$$I(T) = Cexp(-E/KT) \tag{1}$$

$$LnI(T) = -E/KT + LnC (2)$$

where I(T) represents the TL tensity, C is a constant including frequency factor s, K denotes the Boltzmann constant, E is the shallowest trap depth, and T represents temperature. Herein, Fig. 5a is further transformed to the curves of 1000/T vs. Ln(TL intensity) as shown in Fig. 5b, and the slope of each curve in Fig. 5b represents the value of -E/K. Accordingly, the shallowest trap depth E of CaLaAl₃O₇:Tb³⁺ after various pre-heat treatment is obtained, as illustrated in Fig. 5c, which contains two linear stages suggesting that there are two types of traps (trap 1 and trap 2) in the structure of CaLaAl₃O₇:Tb³⁺ with the trap

depth in the range of 0.10-0.66 eV and 0.66-0.70 eV, respectively. In order to investigate the effects of traps on the ML performance, the ML spectra of $CaLaAl_3O_7$: Tb^{3+} after various pre-heat treatments from 298 to 473 K were also measured. As shown in Fig. 5d, the ML intensity of $CaLaAl_3O_7$: Tb^{3+} exhibits a similar decreasing trend to that of the carrier density in traps. It provides a direct evidence that the release of trapped carriers under the mechanical stimuli should be the origination of ML in $CaLaAl_3O_7$: Tb^{3+} .

Based on the PL, ML and TL analysis as well as the temperature-dependent behaviors, the luminescent mechanisms of CaLaAl $_3O_7$:Tb $^{3+}$ are illustrated in Fig. 6. The ① and ② show the PL processes, in which electrons are excited to the $^5L_{10}$ level of Tb $^{3+}$ first and then relaxed to the 5D_3 and 5D_4 levels to generate luminescence. ③-③ illustrate the processes of ML. Under stress stimuli, the electrons in traps could be released to the conduction band (CB) first and then to the 5F_7 level of Tb $^{3+}$. By relaxation to the 5D_3 and 5D_4 levels, the electrons could recombine the holes in 7F_J (J=3, 4, 5, 6) levels, producing the as-observed green ML.

To well perceive the ML performance of CaLaAl $_3O_7$:Tb $^{3+}$, it is further compared to the commercial ZnS:Cu sample which is widely accepted as one of the most efficient ML materials. Fig. 7a shows the comparison of the ML spectra of CaLaAl $_3O_7$:6.0%Tb $^{3+}$ and ZnS:Cu in PDMS elastomer under the same stretching conditions (effective sample size: $25\times10\times2$ mm; powder to elastomer ratio: 1:2; stretching frequency: 3 Hz; maximum stretching strain: 80%). It is found that the maximum ML

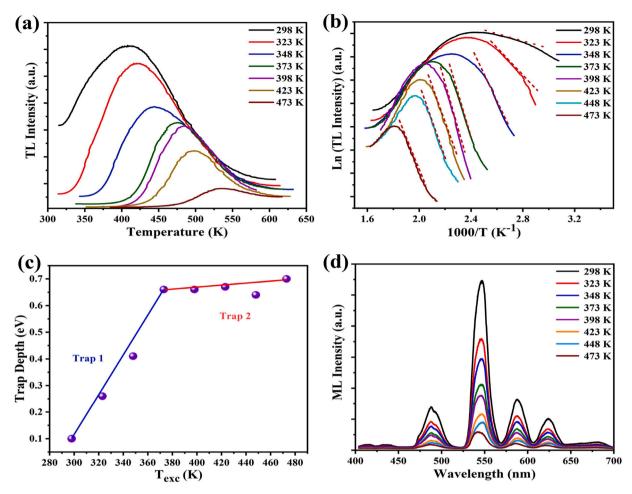


Fig. 5.. (a) TL spectra of CaLaAl $_3$ O $_7$:6%Tb $^{3+}$ after pre-heat treatments from 298 to 473 K; (b) 1000/T vs. Ln(TL intensity) curves transformed from (a); (c) Trap depth variation in CaLaAl $_3$ O $_7$:6%Tb $^{3+}$ after various pre-heat treatments; (d) ML spectra of CaLaAl $_3$ O $_7$:6%Tb $^{3+}$ after pre-heat treatments from 298 to 473 K.

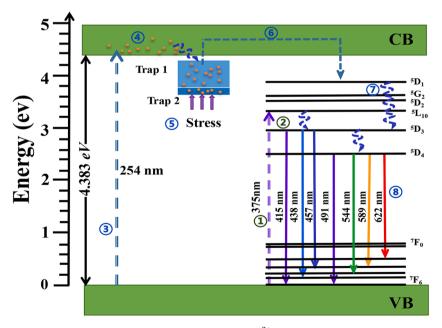


Fig. 6.. PL and ML processes of the $CaLaAl_3O_7$: Tb^{3+} in the energy level diagram.

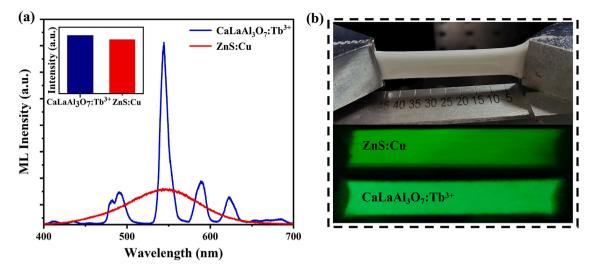


Fig. 7. (a) Horizontal comparison of the ML spectra of CaLaAl $_3$ O $_7$:6.0%Tb $^{3+}$ and ZnS:Cu tested at the same conditions (effective sample size: $25 \times 10 \times 2$ mm; powder to elastomer ratio: 1:2; stretching frequency: 3 Hz; maximum stretching strain: 80%); (b) ML photos of CaLaAl₃O₇:6.0%Tb³⁺ and ZnS:Cu in PDMS elastomers.

peak of CaLaAl₃O₇:Tb³⁺ is higher than that of ZnS:Cu, and the integrated ML intensity of CaLaAl₃O₇:6.0%Tb³⁺ reaches 1.3 times of that of the ZnS:Cu. The color coordinates of the ZnS:Cu and CaLaAl₃O₇:Tb³⁺-based elastomers are calculated to be (0.33,0.46) and (0.35,0.49), respectively. The corresponding ML photos of CaLaAl₃O₇:Tb³⁺ and ZnS:Cu are presented in Fig. 7b. The above results suggest that CaLaAl₃O₇:Tb³⁺ is a very efficient green ML material, showing promising applications in the new generation of lighting, displaying and sensing devices.

4. Conclusions

In summary, CaLaAl₃O₇:Tb³⁺ powders with a layered structure were successfully synthesized by the solid-state method. When mechanics was applied, the CaLaAl₃O₇:Tb³⁺ could exhibit characteristic emissions of Tb³⁺ with a green color. The optimum doping concentration of Tb³⁺ for the ML of CaLaAl₃O₇:Tb³⁺ was determined to be 6.0%, whatever the sample was stimulated by rubbing or stretching. Temperaturedependent TL and ML properties of CaLaAl₃O₇:Tb³⁺ further suggest that its ML should directly originate from the de-trapped carriers under mechanics stimulation, and herein the underlying ML mechanisms were revealed. The as-obtained CaLaAl₃O₇:Tb³⁺ presents an extremely high ML intensity, showing promising applications in the new generation of lighting, displaying and sensing devices.

CRediT authorship contribution statement

Shiye Qin: Methodology, Validation, Investigation, Visualization, Writing – original draft. Jiali Bian: Validation, Investigation. Yue Han: Validation, Investigation. Zhidong Ma: Validation, Investigation. Bin Liu: Validation, Funding acquisition. Jiachi Zhang: Conceptualization, Writing - review & editing, Funding acquisition. Xuhui Xu: Writing review & editing. Zhaofeng Wang: Conceptualization, Writing - review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12074159 and 81970976), and the Natural Science Foundation for Distinguished Young Scholars of Gansu Province (20JR5RA572).

References

- [1] Y. Xie, Z. Li, Chem. 4 (2018) 943-971.
- [2] J.-C.G. Bünzli, K.-L. Wong, J. Rare. Earths 36 (2018) 1–41.
 [3] J.-C. Zhang, X. Wang, G. Marriott, C.-N. Xu, Prog. Mater. Sci. 103 (2019) 678–742.
- [4] Y. Zhuang, R.J. Xie, Adv. Mater. (2021), e2005925.
- [5] S.M. Jeong, S. Song, K.-I. Joo, J. Kim, S.-H. Hwang, J. Jeong, H. Kim, Energy. Environ, Sci. 7 (2014) 3338-3346.
- Y. Zhao, D. Peng, G. Bai, Y. Huang, S. Xu, J. Hao, Adv. Funct. Mater. 31 (2021), [6] 2010265
- C. Wu, S. Zeng, Z. Wang, F. Wang, H. Zhou, J. Zhang, Z. Ci, L. Sun, Adv. Funct. Mater. 28 (2018), 1803168.
- X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z. L. Wang, Adv. Mater. 27 (2015) 2324-2331.
- C. Chen, Y. Zhuang, X. Li, F. Lin, D. Peng, D. Tu, A. Xie, R.J. Xie, Adv. Funct. Mater. 31 (2021), 2101567.
- [10] Y.-T. Fan, Y.-L. Yang, T. Li, J.-Y. Yuan, Q.-L. Li, J.-T. Zhao, D.-Y. Wan, Z.-J. Zhang, J. Mater. Chem. C. 9 (2021) 5868-5875
- S.Moon Jeong, S. Song, S.-K. Lee, B. Choi, Appl. Phys. Lett. 102 (2013), 051110.
- Y. Du, Y. Jiang, T. Sun, J. Zhao, B. Huang, D. Peng, F. Wang, Adv. Mater. 31 (2019), e1807062.
- [13] P. Jha, B.P. Chandra, J. Lumin. 143 (2013) 280-287.
- Y.-F. Xu, D.-K. Ma, M.-L. Guan, X.-A. Chen, Q.-Q. Pan, S.-M. Huang, J. Alloys. Compd. 502 (2010) 38-42.
- [15] B. Tian, Z. Wang, A.T. Smith, Y. Bai, J. Li, N. Zhang, Z. Xue, L. Sun, Nano Energy 83 (2021), 105860.
- Y. Zhang, X. Yin, H. Yu, H. Cong, H. Zhang, J. Wang, R.I. Boughton, Cryst. Growth. Des. 12 (2011) 622-628.
- [17] Y. Li, I.P. Koskin, Z. Ma, E. Benassi, Z. Wang, Dalton. Trans. 49 (2020) 3942-3945.
- [18] H. Zhang, C.-N. Xu, N. Terasaki, H. Yamada, ECS. Solid. State. Lett. 14 (2011)
- [19] N. Zhang, B. Tian, Z. Wang, A.T. Smith, Z. Ma, Z. Xue, L. Sun, Adv. Opt. Mater. 9 (2021), 2100137.
- [20] B. Li, X. Huang, H. Guo, Y. Zeng, Dyes. Pigm. 150 (2018) 67-72.
- [21] S. Sun, L. Wu, H. Yi, L. Wu, J. Ji, C. Zhang, Y. Zhang, Y. Kong, J. Xu, Opt. Express. 6 (2016) 1172-1185.
- V. Singh, K.N. Shinde, M.S. Pathak, N. Singh, V. Dubey, P.K. Singh, H.D. Jirimali, Optik 164 (2018) 407-413.
- A.P. Tsai, J. Non. Cryst. Solids 334–335 (2004) 317–322.
- [24] S. Kadyan, K. Singh, S. Singh, S. Sheoran, J. Singh, D. Singh, Luminescence. 35
- [25] K. Rawat, A.K. Vishwakarma, K. Jha, Mater. Res. Bull. 124 (2020), 110750.
- [26] M. Yang, H. You, Y. Song, Y. Huang, G. Jia, K. Liu, Y. Zheng, L. Zhang, H. Zhang, J. Phys. Chem. C. 113 (2009) 20173-20177.
- [27] M.H. Im, Y.J. Kim, Mater. Res. Bull. 112 (2019) 399-405.
- [28] X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, Z.-Q. Liu, Mater. Res. Bull. 118 (2019), 110523.
- [29] M. Shi, D. Zhang, C. Chang, J. Alloys. Compd. 627 (2015) 25-30.
- [30] G. Zhang, Y. Sun, B. Qian, H. Gao, D. Zuo, Polym. Test. 90 (2020), 106670.
- [31] Y. Zou, X. Min, Z. Liu, L. Yu, B. Liu, Mater. Res. Bull. 124 (2020), 110769.

- [32] W. Peng, H. Xia, Z. Zhang, T. Qi, S. Kong, W. Dai, Z. Huang, J. Alloys. Compd. 753 (2018) 35–40.
- [33] K. Van den Eeckhout, A.J.J. Bos, D. Poelman, P.F. Smet, Phy. Rev. B. 87 (2013), 045126.
- [34] O.Q. De Clercq, J. Du, P.F. Smet, J.J. Joos, D. Poelman, Phys. Chem. Chem. Phys. 20 (2018) 30455–30465.